Particle dynamics in the KdV approximation
نویسندگان
چکیده
The KdV equation arises in the framework of the Boussinesq scaling as a model equation for waves at the surface of an inviscid fluid. Encoded in the KdV model are relations that may be used to reconstruct the velocity field in the fluid below a given surface wave. In this paper, velocity fields associated to exact solutions of the KdV equation are found, and particle trajectories are computed numerically. The solutions treated here comprise the solitary wave, periodic traveling waves, and the two-soliton solutions. For solitary waves and periodic traveling waves, approximate particle paths are found in closed form. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملLong-time stability of small FPU solitary waves
Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentials are described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitude approximation is usually performed on the time scale, for which dynamics of the KdV equation is defined. We show how to extend justification analysis on longer time intervals provided dyn...
متن کاملModified Linear Approximation for Assessment of Rigid Block Dynamics
This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while keepin...
متن کاملبررسی دینامیک کوانتومی مدارهای الکتریکی مزوسکوپی با بار گسسته
The quantum dynamics of a charged particle in an infinite chain of single-state quantum wells, in tight-binding approximation and under the action of an arbitrary time-dependent external field is investigated. The connection between the Hamiltonian description of this model and the Hamiltonian of a discrete-charge mesoscopic quantum circuit is elucidated. Based on this connection, the persist...
متن کاملLight scattering by cubical particle in the WKB approximation
In this work, we determined the analytical expressions of the form factor of a cubical particle in the WKB approximation. We adapted some variables (size parameter, refractive index, the scattering angle) and found the form factor in the approximation of Rayleigh-Gans-Debye (RGD), Anomalous Diffraction (AD), and determined the efficiency factor of the extinction. Finally, to illustrate our form...
متن کامل